Comparison of VieVS and Solve UT1 results from VLBI measurements

Minttu Uunila, Karen Baver, John Gipson, Tobias Nilsson, Hana Krásná

Full Text: PDF PDF (Türkçe)


Comparison of different geodetic VLBI analysis software packages is highly important to ensure that they work properly. Two of the data software packages used by the geodetic VLBI community are Solve and the Vienna VLBI Software (VieVS) packages. In our study we investigate UT1 estimates from VieVS and Solve for both 1-hour IVS Intensives and 24 hour R1s and R4s with various configurations. We attempted to synchronize the settings of the two software packages as much as possible without extensive software changes. In this configuration the weighted mean difference of the UT1 estimates from the IVS intensives was 7.77 μs with an WRMS scatter of 7.14 μs. The weighted mean difference for the 24 hour sessions was -1.66 μs with an WRMS scatter of 5.46 μs. We also investigated the effect of changing other aspects of the solution configurations. In general the resulting differences were small except for imposing a tight clock constraint which significantly worsened the solutions.


VLBI; IVS; UT1; Earth rotation


Bolotin S., (2000) SteelBreeze home page, Accessed on 20 March 2015.

Böhm J., B ̈ohm S., Nilsson T., Pany A., Plank L., Spicakova H., Teke K., Schuh H., (2009), The New Vienna VLBI Software VieVS, In: Proceedings IAG Scientific Assembly 2009, In: International Association of Geodesy Symposia Series Vol. 136, pp 1007-1011, doi:10.1007/978 − 3 − 642 − 20338 − 1 126.

Böhm J. and Schuh H., (2007), Forecasting Data of the Troposphere Used for IVS Intensive Sessions, In: Proceedings 18th European VLBI for Geodesy and Astrometry Working Meeting, 12-13 April 2007, Vienna, pp 153-157.

Böhm J., Werl B., Schuh H. (2006), Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data, Journal of Geophysical Research, 111, B02406, doi:10.1029/2005JB003629.

Böhm J., Niell A., Tregoning P., Schuh H., (2006), Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data, Geophysical Research Letters 33, L07304, doi:10.1029/2005GL025546.

Dickman S.R., (1993), Dynamics ocean-tide effects on Earth’s rotation, Geophysical Journal International, 11, pp 448-470.

Engelhardt G., Thorandt V., Ullrich D., (2011), VLBI Analysis at BKG, In: Proceedings 20th European VLBI for Geodesy and Astrometry Working Meeting, 29-31 March 2011, Bonn, pp 102-104.

Gipson J., MacMillan D., Petrov L., (2008), Improved Estimation in VLBI through Better Modeling and Analysis, In: Proceedings5th International VLBI Service for geodesy and astrometry General Meeting 2008, pp 157-162.

Hobiger T., Otsubo T., Sekido M., Gotoh T., Kubooka T. and Takiguchi H., (2010), Fully Automated VLBI Analysis with c5++ for ultra-rapid determination of UT1, Earth Planets Space, 62, pp 933-937.

Petit G. and Luzum B., (2010), IERS Conventions 2010, (IERS Technical Note ; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodesie, 2010. 179 pp., ISBN 3-89888-989-6.

Kantha LH, Steward JS and Desai SD (1998) Long-period lunar fortnightly and monthly ocean tides, Journal of Geophysical Research, 103, 12, 639

Ma C., Sauber J., Clark T., Gordon D., Himwich W.E., Ryan J.W., (1990), Measurement of horizontal motions in Alaska using very long baseline interferometry, Journal of Geophysical Research, 95, B13, 21991-22011.

MacMillan D., Behrend D., Kurihara S., (2012), Effects of the 2011 Tohoku Earthquake on VLBI Geodetic Mea surements, In: Proceedings 7th International VLBI Service for geodesy and astrometry 2012 General Meeting, pp 440-444, NASA/CP-2012-217504.

Niell A.E., (1996), Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research, 101, 32273246.

Petrov L. and Baver K.D., (2008), Description of the keywords of BATCH control language, 7/31/2008.

Petrov L. and Boy J.-P., (2004), Study of the atmospheric pressure loading signal in very long baseline interferometry observations, Journal of Geophysical Research, Vol. 109, B3. DOI 10.1029/2003JB002500.

Plank L., Böhm J., Schuh H., (2010), Comparison Campaign of VLBI Data Analysis Software - First Results, In: Proceedings 6th International VLBI Service for Geodesy and Astrometry 2010 General Meeting, pp 217-221, NASA/CP-2010-215864.18

Plank L., (2010), Results from the VLBI Data Analysis Software Comparison Campaign. Presented at The First VieVS User Workshop, in Vienna, Austria, 2010

Schuh H. and Behrend D. (2012), VLBI: A fascinating technique for geodesy and astrometry, Journal of Geodynamics, Vol. 61, pp. 6880. DOI 10.1016/j.jog.2012.07.007.

Titov O., Tesmer V. and B ̈ohm J., (2004), OCCAM v. 6.0 Software for VLBI Data Analysis, Proceedings 3rd International VLBI Service for Geodesy and Astrometry 2004 General Meeting, pp 267-271, NASA/CP-2004-212255.

USNO Toshi web site ser7/readme. Accessed on 20 March 2015.

Uunila M., Baver K., Gipson J., Nilsson T., (2012), Comparison of UT1 and Polar Motion from IVS Sessions derived from VieVS and Solve Analysis, In: Proceedings 7th International VLBI Service for Geodesy and Astrometry General Meeting 2012, pp 400-404, NASA/CP-2012-217504.

Wahr J.M. and Bergen Z., (1986), The effects of mantle anelasticity on nutations, Earth tides, and tidal variations in rotation rate, Geophysical Journal of Royal Astronomical Society, 87(2), pp 633-668, doi:10.1111/j.1365-246X.1986.tb06642.x.

Yoder C.F., Williams J.G. and Parke M.E., (1981), Tidal variations of Earth rotation, Journal of Geophysical Research, 86(B2), pp 881-891, doi:10.1029/JB086iB02p00881.

Full Text: PDF PDF (Türkçe)







MAIL:Sümer 1. Sokak, No:12/4, 06440 Kızılay, Ankara, TURKEY CONTACT

TEL: +90 (312) 2325777 FAX: +90 (312) 2308574